In vivo determination of hepatic stiffness using steady-state free precession magnetic resonance elastography.

نویسندگان

  • Dieter Klatt
  • Patrick Asbach
  • Jens Rump
  • Sebastian Papazoglou
  • Rajan Somasundaram
  • Jens Modrow
  • Jürgen Braun
  • Ingolf Sack
چکیده

OBJECTIVE The objective of this study was to introduce an magnetic resonance elastography (MRE) protocol based on fractional motion encoding and planar wave acquisition for rapid measurements of in vivo human liver stiffness. MATERIALS AND METHODS Vibrations of a remote actuator membrane were fed by a rigid rod to the patient's surface beneath the right costal arch resulting in axial shear deflections of the liver. Data acquisition was performed using a balanced steady-state free precession (bSSFP) sequence incorporating oscillating gradients for motion sensitization. Tissue vibrations of frequency fv = 51 Hz were tuned by twice the sequence repetition time (1/fv = 2TR). Twenty axial images acquired by time-resolved through-plane wave encoding were used for planar elasticity reconstruction. The MRE data acquisition was achieved within 4 breathholds of 17 seconds each. The method was applied to 12 healthy volunteers and 2 patients with diffuse liver disease (fibrosis grade 3). RESULTS MRE data acquisition was successful in all volunteers and patients. The elastic moduli were measured with values between 1.99 +/- 0.16 and 5.77 +/- 0.88 kPa. Follow-up studies demonstrated the reproducibility of the method and revealed a difference of 0.74 +/- 0.47 kPa (P < 0.05) between the hepatic stiffness of 2 healthy male volunteers. CONCLUSION bSSFP combined with fractional MRE enables rapid measurement of liver stiffness in vivo. The used actuation principle supports a 2-dimensional analysis of the strain wave field captured by axial wave images. The measured data indicate individual variations of hepatic stiffness in healthy volunteers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase preparation in steady-state free precession MR elastography.

Strain and motion measurements in balanced steady-state free precession (bSSFP) imaging require high magnetic field homogeneity. This requirement is due to the nonlinear signal response to spin phase variations in bSSFP. Here, a technique that utilizes background gradients for preparing strong in-plane spin phase variations is proposed. As a result, periodic patterns of increased motion sensiti...

متن کامل

Cardiac magnetic resonance elastography. Initial results.

OBJECTIVES To develop cardiac magnetic resonance elastography (MRE) for noninvasively measuring left ventricular (LV) pressure-volume (P-V) work. MATERIAL AND METHODS The anterior chest wall of 8 healthy volunteers was vibrated by 24.3-Hz acoustic waves for stimulating oscillating shear deformation in myocardium and adjacent blood. The induced motion was recorded by an electrocardiogram-gated...

متن کامل

Spectrally selective imaging with wideband balanced steady-state free precession MRI.

PURPOSE Unwanted, bright fat signals in balanced steady-state free precession sequences are commonly suppressed using spectral shaping. Here, a new spectral-shaping method is proposed to significantly improve the uniformity of stopband suppression without compromising the level of passband signals. METHODS The proposed method combines binomial-pattern excitation pulses with a wideband balance...

متن کامل

Comparison the Accuracy of Fetal Brain Extraction from T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR Image with T2-True Fast Imaging with Steady State Free Precession (TRUFI) MR Image by Level Set Algorithm

Background Access to appropriate images of fetal brain can greatly assist to diagnose of probable abnormalities. The aim of this study was to compare the suitability of T2-True Fast Imaging with Steady State Free Precession (T2-TRUFI), and T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (T2- HASTE( magnetic resonance imaging (MRI) to extract the fetal brain using the level set algorithm...

متن کامل

Overhauser-enhanced magnetic resonance elastography.

Magnetic resonance elastography (MRE) is a powerful technique to assess the mechanical properties of living tissue. However, it suffers from reduced sensitivity in regions with short T2 and T2 * such as in tissue with high concentrations of paramagnetic iron, or in regions surrounding implanted devices. In this work, we exploit the longer T2 * attainable at ultra-low magnetic fields in combinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative radiology

دوره 41 12  شماره 

صفحات  -

تاریخ انتشار 2006